整式加减教案8篇

时间:2024-04-12 作者:Youaremine

结合实际的教学进度编写教案,能够更好地激发学生的学习兴趣和参与度,提高学习的积极性,通过详实的教案,我们能够有条不紊地引导学生进行学习和思考,提高他们的学习效果和学习兴趣,团子范文网小编今天就为您带来了整式加减教案8篇,相信一定会对你有所帮助。

整式加减教案8篇

整式加减教案篇1

教学目的

1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

教学分析

重点:整式的加减运算。

难点:括号前是-号,去括号时,括号内的各项都要改变符号。

突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

教学过程

一、复习

1、叙述合并同类项法则。

2、叙述去括号与添括号法则。

3、化简:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的'化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

2、例题

例1(p166例1)

求单项式5x2y,-2 x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

解:(略,见教材p166)

例2(p166例2)

求3x2-6x+5与4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)

=3x2-6x+5+4x2-7x-6(去括号)

=7x2+x-1(合并同类项)

例3。(p166例3)

求2x2+xy+3y2与x2-xy+2y2的差。

解:(2x2+xy+3y2)-( x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、归纳整式加减的一般步骤。

整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

三、练习

p167:1,2,3,4。

补:已知:a=5a2-2b2-3c2, b=-3a2+b2+2c2,求2a-3b

四、小结

1、文字叙述的整式加减,对每一个整式要添上括号。

2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

五、作业

1、 p169:a:1(3、4),3,5,6,7,8。b:1,2。

基础训练同步练习1。

整式加减教案篇2

新课指南

1.知识与技能:(1)在具体情境中了解代数式及代数式的值的含义;(2)掌握整式、同类项及合并同类项法则和去括号法则;(3)培养学生用字母表示数和探索数学规律的能力.

2.过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式.在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题.

3.情感态度与价值观:通过对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.

4.重点与难点:重点是用含有字母的式子表式规律,理解整式的意义,合并同类项的法则和去括号的法则.难点是探索规律的过程及用代数式表示规律的方法,以及准确识别整式的项、系数等知识.

教材解读精华要义

数学与生活

如图15-1所示,用同样规格的黑、白两色的正方形瓷砖铺长方形地面,在第n个图形中,每一行有块瓷砖,每一列有块瓷砖,共有块瓷砖,其中黑色瓷砖共块,白色瓷砖共块.

思考讨论由图15-1可以看到,当n=1时,一横行有4块瓷砖,一竖列有3块瓷砖;当n=2时,一横行有5块瓷砖,一竖列有4块瓷砖;当n=3时,一横行有6块瓷砖,一竖列有5块瓷砖.综上可以发现:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一横行的瓷砖数等于n加上3,一竖列的瓷砖数等于n加上2.所以,在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖,共有(n+3)(n+2)块瓷砖,其中白色瓷砖共(n+3-2)(n+2-2)=n(n+1)块,黑色瓷砖共有[(n+3)(n+2)-n(n+1)]块.这就是用字母来表示数,即代数式,你还能举出这样用字母表示数的例子吗?

知识详解

知识点1代数式

用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.

例如:5,a,(a+b),ab,a2-2ab+b2等等.

知识点2列代数式时应该注意的问题

(1)数与字母、字母与字母相乘时常省略“×”号或用“·”.

如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

(2)数字通常写在字母前面.

如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

(3)带分数与字母相乘时要化成假分数.

如:2×ab=ab,切勿错误写成“2ab”.

(4)除法常写成分数的形式.

如:s÷x=.

整式加减教案篇3

知识目标:

(1)使学生在掌握合并同类项的基础上,掌握去括号法则。

(2)正确地进行简单的整式加减运算。

能力目标:培养学生基本的运算技巧和能力。

情感目标:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。

教学重点、难点:

重点 去括号法则。 教学

难点 正确运用去括号法则,减少运算中的符号错误。

教学用具: 多媒体

教 学 过 程 :

(一)、情景引入

1、多媒体展示游戏:把我的出生月份数乘2,加10,再把和乘5,加上我家的人口数,结果为133

你出生于8月份,你家有3口人

2、猜数游戏的数学原理常常与代数式的运算有关

3、知识梳理

-2x+3y-4z 共有 项,其中第三项是: 。

1、写出 2a2b 的一个同类项:

2、已知4a2b3与a2mbn-1是同类项,则m= ____,n=_____.

(二)实践应用, 拓展延

如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。

2、用分配律计算:

(1) +(a-b+c)

(2) -(a-b+c)

3、代数式运算的去括号法则:

括号前是+号,把括号和它前面的+号去掉,括号里各项都不变号;括号前是-号,把括号和它前面的-号去掉,括号里各项都改变符号

4、顺口溜

去括号,看符号

是+号,不变号

是-号,全变号

5、辩一辩:指出下列各式是否正确?如果错误,请指出原因.

(1) a-(b-c+d) = a-b+c+d

(2) -(a-b)+(-c+d)= a+b-c-d

(3) a-3(b-2c)=a-3b+2c

(4) x-2(-y-3z+1)=x-2y+6z

6.注意:(1)去括号时应将括号前面的符号连同括号一起去掉.

(2)要注意括号前面是 -号时,去掉括号后, 括号里各项都要改变符号;不能只改变某几项而忘记改变其余的符号

(3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘.

7:练一练

(三)作业

整式加减教案篇4

三维目标

一、知识与技能

使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数。

二、过程与方法

通过实例列整式,培养学生分析问题、解决问题的能力。

三、情感态度与价值观

培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义。

教学重、难点与关键

1.重点:多项式以及有关概念。

2.难点:准确确定多项式的次数和项。

3.关键:掌握单项式和多项式次数之间的区别和联系。

教具准备投影仪。

四、课堂引入

一、复习提问1.什么叫单项式?举例说明。

2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?

3.列式表示下列问题:

(1)一个数比数x的2倍小3,则这个数为________.

(2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买3个篮球,5个排球,2个足球共需________元。

(3)如图1,三角尺的面积为________.

(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米。

整式加减教案篇5

三维目标

一、知识与技能

能根据题意列出式子:会进行整式加减运算,并能说明其中的算理。

二、过程与方法

经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力。

三、情感态度与价值观

培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式的应用价值。

教学重、难点与关键

1.重点:列式表示实际问题中的数量关系,会进行整式加减运算。

2.难点:列式表示问题中的数量关系,去掉括号前是负因数的括号。

3.关键:明确问题中的数量关系,熟练掌握去括号规律。

教具准备:投影仪。

四、教学过程 引入新课

1.多项式中具有什么特点的项可以合并,怎样合并?

2.如何去括号,它的依据是什么?

五、新授

例1.(1)求多项式2x-3y与5x+4y的和。

(2)求多项式8a-7b与4a-5b的`差。

例2.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?

整式加减教案篇6

一、素质目标

(一)知识教学点

1.理解:整式的加减实质就是去括号,合并同类项.

2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤.

3.运用:能够正确地进行整式的加减运算.

(二)能力训练点

1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力.

2.培养学生用代数方法解几何问题的思路.

(三)德育渗透点

渗透教学知识来源于生活,又要为生活而服务的辩证观点.

(四)美育渗透点

整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美.

二、学法引导

1.教学方法:以旧引新,通过自己操作发现解题规律.

2.学生学法:练习→总结步骤→练习

三、重点、难点、疑点及解决办法

整式加减运算.

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

教师出示探索性练习,学生解答归纳整式加减运算的一般步骤,教师出示巩固性练习,学生以多种形式完成.

七、教学步骤

(一)创设情境,复习引入

(出示投影1)

化简下列各式

(1)

;

(2)

;

(3)

.

学生活动:同桌两位同学出一个学生在胶片上化简,另一个学生在练习本上完成,然后把几个学生的演算胶片用投影打出,其他学生一起来给打分.不对的,由学生找出错在哪里,错误的原因是什么.

师提出问题:上述三个数学式子,同学们讨论一下,怎样用数学语言进行叙述呢?(把每个括号看作一个整体)

学生活动:同桌同学互相讨论、研究,若讨论的结果、语句认为比较通顺者可以举手回答,同学们再互相更正.(学生回答时,教师用彩笔把运算符号写在胶片上显示出来,以引起注意.)

?教法说明】前两节去括号、合并同类项的内容,其实就是整式加减内容的一部分,复习上述知识,学生可以很轻松地就过渡到整式加减这一节内容上来,使新旧知识很自然地衔接起来.

师提出问题:上述式子中,每个括号内的式子是什么式子?(整式)从而引出课题,并板书.

[板书]

?教法说明】以合并同类项、去括号为铺垫,从而引出本节知识,可以说是自然顺畅,学生不会感到整式加减法陌生.

(二)探求新知,讲授新课

整式加减教案篇7

第1课时合并同类项

了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项.

能先合并同类项化简后求值.

阅读教材p62~65,思考下列问题.

什么是同类项?怎样合并同类项?

知识探究

把多项式中的同类项合并成一项叫做合并同类项.

合并同类项的法则:系数相加,字母和字母指数不变.

自学反馈

若2x2yn与-3xmy4是同类项,则m=2,

判断下列各题中的两个项是否是同类项,如果不是,请说明原因:

(1)4与-12;(是)

(2)32与a2;(不是,原因略)

(3)2x与2x;(不是,原因略)

(4)3mn与3mnp;(不是,原因略)

(5)2πr与-3x;(不是,原因略)

(6)3a2b与(不是,原因略)

合并同类项.[来源]

(1)3x2-2xy+y2-x2+2xy;

(2)2a2b-3a2b+12a2b;

(3)a3-a2b+ab2+a2b-ab2+b3;

(4)4x2-8x+5-3x2+

解:(1)2x2+(2)(3)a3+(4)x2-2x+

(1)同类项与字母的顺序无关;(2)合并同类项中系数求和时注意符号问题.

活动1小组讨论

例1合并同类项.

(1)4a2+3b2+2ab-4a2-3b2;

(2)3x-2x2+5+3x2-2x-5;

(3)a3+a2b+ab2-a2b-ab2-b3;

(4)6a2-5b2+2ab+

解:(1)(2)x2+(3)(4)

例2求多项式5x2+4x-6x2-x+2x2-3x-1的值,其中

解:原式当x=-3时,原式

先化简,再带值.

例3(1)水库水位第一天连续下降了a h,每小时平均下降2 cm;第二天连续上升了a h,每小时平均上升 cm,这两天水位总的变化情况如何?

(2)某商店原有5袋大米,每袋大米为x 上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?

解:(1)把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化量是-2a cm,第二天水位的变化量是

两天水位的总变化量(单位:cm)是

-2a+(-2+)

这两天水位总的变化情况为下降了

(2)把进货的数量记为正,售出的数量记为负.

进货后这个商店共有大米(单位:kg)

5x-3x+4x=(5-3+4)

活动2跟踪训练

已知-2an-1b4与a2bm+1是同类项,则

合并同类项.

(1)-ayb-4a2b+4ab2+2a2b;

(2)a2-2-3a+

解:(1)-2a2b+(2)

先化简,再求值:

13x3-2x2+23x3+3x2+5x-4x+7,其中

解:原式=x3+x2+x+当时,原式

活动3课堂小结

同类项:(1)所含字母相同;(2)相同字母的指数也相同.

合并同类项:把多项式中的同类项合并成 一项.

合并同类项法则.

第2课时去 括号

探究去括号法则,并且利用去括号法则将整式化简.

发现去括号时的符号变化的规律,归纳出去括号法则.

阅读教材p65~67,思考下列问题:如何去掉括号,分几种情况?

知识探究

去括号时,如果括号外的符号是正号,去括号后原括号内各项的符号与原来的符号相同;如果括号外的符号是负号,去括号后原括号内各项的符号与原来的符号相反.

自学反馈

去括号:

(1)-(-a+b)+(-c+d)=a-b-c+d;

(2)x-3(y-1)=x-3y+3;

(3)-2(-y+8x)

下列去括号过程是否正确?若不正确,请改正.

(1)a-(-b+c-d)=a+b+c-d;(不正确)a+b-c+d;

(2)a+(b-c-d)=a+b+c+d;(不正确)a+b-c-d;

(3)-(a-b)+(c-d)=-a-b+c-d;(不正确)-a+b+

化简a+b+(a-b)的最后结果是(c)

+

去括号有两种情况最容易出错:(1)当括号前面含有因数时,根据乘法分配律,这个因数要与括号里面的各项都相乘,不要漏乘;(2)当括号前面是“-”号时,括号里面的各项符号都要改变.

活动1小组讨论

例去括号,再合并同类项:

(1)x-(3x-2)+(2x+3);

(2)(3a2+a-5)-(4-a+7a2);

(3)(2m-3)+m-(3m-2);

(4)3(4x-2y)-3(-y+8x).

解:(1) (2)-4a2+(3)(4)[来源:学_科_网]

活动2跟踪训练

下列去括号中,正确的是(c)

(2a-1)=a2-2a-1

+(-2a-3)=a2-2a+3

[5b-(2c-1)]=3a-5b+2c-1

(a+b)+(c-d)=-a-b-c+d

当a=5时,则(a2-a)-(a2-2a+1)的值为(a)

去括号,并合并同类项:

(1)-(5m+n)-7(m-3n);

(2)-2(xy-3y2)-[2y2-(5xy+x2)+2xy].

解:(1)-12m+(2)xy+4y2+

活动3课堂小结

去括号法则.

第3课时整式的加减

进一步熟悉掌握去括号、合并同类项运算.

掌握整式加减运 算在实际问题中的应用.

能进行整式的加减混合运算,能准确处理括号问题.

阅读教材p67~69,思考下列问题.

如何进行整式的运算.

知识探究

整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.

自学反馈

化简下列各题:

(1)-3(2x-y)-2(4x+12y)+2 009;

(2)-[2m-3(m-n+1)-2]

解:(1)-14x+2y+(2)m-3n+

去一层括号合并一次同类项,不要只去括 号,到最后一次合并同类项,那样式子做起来比较复杂.

活动1小组讨论

计算:

(1)3(ab-2c)-5(-ab-c);

(2)2x2-3[3x-2(-x2+2x-1)-4].

解:(1)(2)-4x2+3x+

先化简,再求值:-3[y-(3x2-3xy)]-[y+2(4x2-4xy)],其中x=-3,

解:原式当x=-3,y=13时,原式

活动2跟踪训练

化简求值.

(1)2x2-[x2-2(x2-3x-1)-3(x2-1-2x)],其中x=12;

(2)2(ab2-2a2b)-3(ab2-a2b)+(2ab2-2a2b),其中a=2,

解:(1)原式当x=12时,原式

(2)原式当a=2,b=1时,原式

已知m=3x2-2xy+y2,n=2x2+xy-3y2,求:

(1)m-n;(2)m+

解:(1)x2-3xy+(2)

活动3课堂小结

整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.

整式加减教案篇8

一、教材分析

本节内容是人民出版社出版《义务课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的`活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则)

2、每小组制作大小不等的两个长方体纸盒模型。