数学选修课心得6篇

时间:2024-06-12 作者:betray

想要给更多人启发和思考,写心得体会的时候就一定要端正好自己的态度,文学爱好者通过读后感可以与其他人分享自己的阅读心得和体验,团子范文网小编今天就为您带来了数学选修课心得6篇,相信一定会对你有所帮助。

数学选修课心得6篇

数学选修课心得篇1

通过这几节课数学建模选修的学习,我了解到数学建模的以下基本要素(数模的一般过程)。

1.形成问题了解实际背景明确建模目的搜集有关信息掌握对象特征

2.假设与简化针对问题特点和建模目的作出合理的、简化的假设作出合理的、简化的假设

3.建立模型用数学的语言、符号描述问题发挥想像力使用类比法尽量采用简单的数学工具

4.模型的检验与评价如结果的误差分析、统计分析、模型对数据的稳定性分析与实际现象、数据比较,检验模型的合理性、适用性

5.模型的改进

6.模型的求解各种数学方法、软件和计算机技术

简而言之,数学建模的全过程:表述、求解、解释、验证。

数学建模常用软件的特点:

1.spss功能全面,系统地集成了多种成熟的统计分析方法;有完善的数据定义、操作和管理功能;方便地生成各种统计图形和统计表格;使用方式简单,有完备的联机帮助功能;软件开放性好,能方便地和其他软件进行数据交换(优点:统计软件中的贵族;操作界面极为友好;所有统计软件中最友好的;精心设计的图形操作界面;美观的结果输出便于非统计专业人员掌握使用。缺点:菜单所列的统计方法有限;中间结果不能单独输出;不利于重复操作;帮助系统没有统计学知识;各种模块彼此独立.)。

2.sas(statisticalanalysissystem)真正的巨无霸。被誉为国际上的标准统计软件和最权威的组合式优秀统计软件。人机对话界面太不友好;学习起来较困难(编程);说明书非常难懂。

3.lingo既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运行速度快,计算能力强;内置建模语言,提供几十个内部函数,从而能以较少将集合的概念引入编程语言,很容易将实际问题转换为lingo模型;语句较直观的方式描述较大规模的优化模型;能方便地与excel、文本文件等其他软件交换数据。

对数学建模课的看法和建议:首先,感谢郭老师抽出宝贵的周末休息时间来为我们做讲座。在本期的数模课中,我获益匪浅。既了解了数学建模的基本知识——数学建模的含义与意义、数模的基本要素。数学建模的基本过程、建模过程中软件的使用及数模竞赛论文的写作。

并且有幸在建模选修课期间参加了数学建模竞赛,体验了一次真正的对于问题的提出、模型的假设、模型的建立、模型的检验与评价、模型的改进的数学建模竞赛。其间,遇到了“问题的出现—问题的解决—新问题的出现—再次解决……”的挑战,与队友不断地思考、讨论、查阅资料,与时间赛跑,甚至通宵“作战”。最后,“功夫不负有心人”终于完成了论文的写作,提交了答卷。

虽然只是第一次参加数模竞赛,但是,此次比赛的经历和经验却让我终生受益——我不仅在短短的今天内收获了以前不知道的建模知识,而且知道了该怎样与队友合作共同完成工作,收获了一段珍贵的友情;竞赛期间,分秒必争,与时间赛跑,知道了什么叫“珍惜时间”,什么叫“时间可贵”,它让我在以后的生活中学会怎样去珍惜时间、怎样去延长生命;竞赛时,对于遇到的重重困难,我们秉着“不抛弃,不放弃”的态度,不断接受挑战,个个击破困难,最后终于解决问题,它让我知道在以后的生活中,要“迎难而上”、“越挫越勇”,不惧一切困难。

最后,我想说,对于对数模感兴趣的学子来说,10个课时的选修课讲座时间实在太短,对于,软件知识的学习实在太少,希望学校能专门开设一门长课时的建模选修课以满足更多数模爱好者的对数学知识的研究、探索热情。

数学选修课心得篇2

这次选修课我选了“数学文化”,因为当我看到这个名字时,我觉得学到一些数学的周边知识对我的学习与生活可能还是有点用的,所以我报了名。

“数学文化”这门课给我们介绍了很多数学的知识,包括数学的历史、数学的发展等等,早在20xx多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。实际上,我们每一个人,天天都在跟数字打交道。一个人不识字完全可以生活,但是若不识数,就很难生活了,现代科技进步,对数学的要求越来越高,所以我觉得“数学文化”这门课程为我们剖析“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。

第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。

到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。

老师还给我们点评了数学史上的'一些重大事件,如三次数学危机,这三次数学危机每一次都是数学探索者们在进行对数学这门学科的探索时产生的问题,每次出现了数学危机后,数学家们都努力地对其进行探究,通过各种各样的方法把这些问题解决。那节课让我了解到数学的世界是时时刻刻都会有矛盾的世界,研究数学就是在研究把这些矛盾解决掉或者用正当的理论把矛盾解释清楚的方法。

有一节课上,老师给我们看了很多由数学分形而制成的各种各样的图像,我都无法用言语来形容我当时的感受,那让我明白了原来生活中在衣服上、各种电器的屏保中的那么多美丽的图案都是出自数学这门神秘的学科里,那节课真的让我们体验到了数学的神奇与壮观。

这门课让我对数学——这门把一切事物抽象化的科学产生了浓厚的兴趣。虽然我知道,要学好数学很难,学习数学不单单是学习数学的公式定理,更要学习数学家们坚持不懈、开拓进取的精神。

数学选修课心得篇3

一、生活即数学。

?数学课程标准》提出“人人学有价值的数学;人人都能获得必须的数学。”强调了大众数学学习的内容的应用价值——能适应未来社会生活的需要。因此,我们的数学教学除了系统的数学知识的教学外,还应密切联系生活实际,调整相应的数学内容,做到生活需要什么样的数学内容,就教学什么样的数学知识,让生活中人们所必须的知识与技能成为数学教学的目标与追求。如过去我们数学内容中计算有些难,而现代社会的飞速发展,计算器、计算机的全面普及,计算难度有所降低,更注重计算的必要性和算理。改变了课程过去“繁、难、偏、旧”和过于注重书本知识的现状,加强了课程内容与数学学习生活以及社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。

二、教师必须改变过去的教学模式

化。律。总之,要在一堂课中让学生体验整个数学过程,实现课堂教学的三维目标。

三、教师必须改变旧的评价体系

以往的应试教育注重的是学生学业成绩的好坏,以考试作为评价学生的唯一手段,新的评价体系不仅包括对学生的评价,而且还提出了对教师和学校的评价,不以学期和学年的一次性考试来评定学生,强调对学生在学习过程中进展情况的评价,强调对学生能力与自信心的建立,参与活动的意识和合作学习的精神进行评价。

总之,对新课标的学习和实施确实给我的日常教学带来了生机和活力。在一次次的动手实践中、在一次次的探索与交流中,我们的学生越发的活泼与可爱,同时也使我和我的学生们在浑然不觉之中感受着知识的滋养。面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受“快乐数学”。通过寒假对《数学课程标准》进一步的深入学习,在以后的教学工作中,我将不会迷惑、彷徨,我相信在以,上好每节课。

提,培养学生的观察能力。

新课标指出:学生能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据,给出证明。低年级学生年龄小,阅历浅,无意注意占主导,观察能力有限。他们最初的观察是无目的、无顺序的,只是对教材中的插图、人物、颜色等感兴趣,不能领悟其中蕴藏的数学知识。在教学中我们要尊重他们的兴趣,先给他们一定的时间看,接着,再一步一步引导他们观察,将他们的注意引入正题,按一定的规律去观察。

例如,在教学“数一数”时,一幅生动美丽的校园图展现在学生面前。学生马上被画面中的人物形象、色彩及热闹场面吸引住了,非常高兴,津津有味地看起来。这时教师不急于把问题提出来,牵制学生的注意力,而是给他们一定的时间随意看自己想要看的,还可以说说图上有什么。当学生的好奇心得到满足后,教师再提出要求,如:

找。教师方法。

(二)、利用教材插图,培养学生的语言表达能力。

语言是思维的外在表现,语言的发展和思维的发展密切相关,培养学生的语言表达能力能促进他们思维的发展。因此,在教学中,教师充分利用每一幅插图启发学生说,首先鼓励每一位学生试说,并且不作统一要求,让每个学生把自己所观察到的说出来,接着再同桌互相说,这样学生对内容的理解也进了一步。

例如:在教学“比大小”时,可先出示主题图,让学生先观察并说说图中画的有什么?学生通过观察,可能会说:“图上画有猴子和一些水果。”还可能说:“图上有3只猴子和4个梨、3个桃、2个香蕉。”对这些同学的回答,教师要给予肯定。然后教师再单独出示3个猴子和3个桃,问:“谁多谁少?”学生可能会说:“一样多”。教师可引导学生:“谁能把话说得完整一些?”从而引导学生回答:“猴子和桃子一样多。”这时,教师再出示3个猴子和2个香蕉,引导学生观察比较,学生可能说:“猴子多,香蕉少。”教师再出示3个猴子和4个梨,学生可能说:“猴子少,梨多。”教师可以引导:“刚才你们说猴子多,现在又说猴子少,到底猴子是多还是少呢?猴子、香蕉、

(三)、创设学习情境,培养学生动手操作能力。

数学知识是比较抽象的,而低年级学生的思维特点,是以具体形象思维为主的,同时也保留着直观动作思维形式。教师要从学生年龄特点和思维特点出发,本着数学来源于生活这一事实,自始至终都要从学生生活实际出发引入课题,创设操作学习情境,让学生在实际操作中,通过观察来理解数学概念,掌握数学方法,逐步培养学生的各种能力。

例如:在教学“7的组成”时,教师可先让学生拿出7根小棒,再让学生把这7根小棒分成两堆。放手让学生自己摆小棒,很快学生马上就得出不同种分法,这样,学生通过自己动手操作、观察、比较,很快就得出了7的组成。

?数学课程标准》指出:“提倡让学生在做中学”。

数学选修课心得篇4

20xx年12月9日,数学教研会组织了同课异构教研活动。听了陈玉芝和封惠两位数学老师的执教的《平均数》一课,此次听课收获很大,受益匪浅,不仅让我领略到了两位数学教师的讲课风采,也让我从中发觉到了在课堂教学方面自身的浅薄与不足。在以后的教学中,我会努力上好每一节课,向身边的优秀教师学习。下面我谈谈自己的体会。

第一、教师善于创设情境;教师在教学过程中创设的情境,目标明确,能为教学服务。提高了学生的好奇心、激发了求知欲,进而促进其思维。教师创设的情境要真正为教学服务,如果只是为了情境而情境,那就是一种假的教学情境。

在这两节课里,上课的老师都能根据学生的特点为学生创设充满趣味的学习情景,以激发他们的学习兴趣。最大限度地利用小学生好奇、好动、好问等心理特点,并紧密结合数学学科的自身特点,创设使学生感到真实、新奇、有趣的学习情境,激起学生学习兴趣。让学生用数学思想去思考问题,解决问题。使他们在质疑中思考,在思考中学到知识。

第二、教师在数学教学中,根据学生的心理发展特点,把枯燥、呆板的课堂教学改变了,从而也培养了学生学习数学的兴趣,激发了孩子的求知欲。尤其是在听课过程中,我更加深刻的体会到这些数学教师教学方法的与众不同,也充分体现了“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。

听了2节课,每堂课细细的听下来后,感觉每位授课教师都煞费苦心的作了周密而细致的准备,所以每堂课都有很闪光的亮点供我们参考、学习、借鉴,当然有比较就会有鉴别。所以我会把其中的精华加以吸取,尝试运用到以后的课堂教学过程中,来逐步的提高和完善自己的课堂教学。

总之,平时一定要多学习新课改理念,认真钻研教材,挖掘教材,积极参加教科研活动,提高自己的业务水平、授课能力,多听同任教

师的课,取人之长,补己之短,争取在以后的教学中取得好成绩。

数学选修课心得篇5

浅印象里提起数学一词,对于我个人来说,数学就是一堆堆死板无活力的公式,像是一个个严肃的战士,需要各种证明来计算我们课本或者卷纸上的问题。幼稚园时候,数学就是数数,简单的计算,简单到用手指头就能计算出结果;小学时候,数学就是不停的计算鸡鸭鹅狗笼子里多少只脚的问题;初中时候,问题变得多元化,但是从此开始了更没有什么趣味的代数和几何,不停的计算来证明,得分。唯一的一点趣味也无了踪影;高中时候,数学变成了高数,每天脑子里的正余弦定理,一切依旧没了趣味;大学时候,学的依旧叫高数,只是名字由高中数学变成了高等数学,依旧对数学提不起兴趣。无意中选修了这门选修课,却让我收获了另一种看法,一改以往的印象,其实数学是需要欣赏的,数学有它自己的文化和趣味,并不是一门枯燥反反复复的计算。

关于数学我这样理解:数学,用公式的话来解释它就是研究数量、结构、变化及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用。由计数、计算、量度和对物体形状及运动的现象中产生。数学家们拓展这些概念,为了公事新的猜想以及从何时选定的公式及定义中建立起严谨推导出的真理。

虽然说,数学存在着各种逻辑与抽象的问题,但是,这些都掩盖不住数学的没,数学的美不在于表面,而在于它的内在,数学的表面枯燥乏味,但是它的内在却是充满了乐趣。数学的美吸引了许许多多的人们来探索,人们喜欢数学,探索数学,其实就是被数学的美吸引。爱因期坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。欧拉给出的公式:v—e+f=2,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数v、棱数e、面数f,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?

数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(l、a、white)的数学文化论力图把数学回归到文化层面。克莱因(m、kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。

课上我们看了个视频,名字记不住了,但是确实很吸引我们,让我们感受到数学确实很重要,我们在不断的实践,无论哪个国家。这是人类的探索。

奥秘,数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间—日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。

可见数学的发展是一步步发现深化和完善的,我们如同探险者,不断的推翻错误的观点和公式,然后用新的公式代替,最后期待实现真理的目的。数学的神秘和有趣是无尽的,是人们追求的,是人们在高科技现代化所需要的文明产物,可以说上到科学研究,下到吃穿住行没有一个可以完全脱离数学而存在的。它是支撑我们这个多元多彩世界的重要部分,没有它就没有这个丰富的世界。所以通过这门选修课,确实让我对数学有了更深的了解,我不能用以往的印象理解数学,误解数学的美。感谢老师以及数学,让我意识到数学有它独特的美,我们要用欣赏的眼光去看待数学,因为它不仅是一种解决问题的方法,也是一种美丽的文化。

数学选修课心得篇6

8月28日,我参加了灵源讲堂“数学专场”的学习,又一次有幸地听到了林培育老师的精彩讲座《依课标抓本质促教学》,他以教师该如何学习课标的方式给我们阐述了在学习课标时的几个重点。

我最大的感受就是数学教学要抓住数学的本质,数学的本质是什么呢?数学不仅仅是科学知识的体系,更是人类文化的组成部分,这就要求我们的教育观念要变化,要把学生培养成为具有数学素养的人,要让学生学会数学思考的模式,这才是更重要的内容,尤其是数学思想的渗透更好的说明了这点。要教给学生思考的方法,这样学生学到的数学才是活的数学,才能在以后的学习中灵活运用所学知识。

林老师又从四基的基本理念揭示数学课程中如何贯彻数学的基本本质,课标理念:人人都能获得良好的数学教育,不同人在数学上得到不同的发展。林老师强调要让数学回归本真与简单,让有价值的数学给孩子们带来信心与乐趣。在讲座中,他通过生动的课堂实录、课例,给我们一一展示了在教学中如何来体现四基,认为数学从现实世界中来,要加强内在逻辑的内化形成新理论,让学生掌握数学的根,再应用到现实生活中去。

听了林老师的讲座,我深刻地体会到学习的重要性。只有不断的学习,不断加强修养才能提升自己的教学能力。也只有真正读懂学生、读懂教材、读懂课堂,才能为孩子们奉献出既“好吃”又“有营养”的数学,让学生享受“快乐数学”。